

Geodetic Coordinate Calculation Based on Monocular Vision on UAV Platform

Zhi Li¹, Tao Yang¹, Guangpo Li¹, Jing Li², Yanning Zhang¹

¹School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, China ²School of Telecommunications Engineering, XiDian University, Xi'an, China

1. Introduction

2. Proposed Algorithm

3. Experiment Results

Introduction

- Vision Measurement Technology based on UAV Platform
 - Goal
 - Precise location of ground targets based on Monocular Vision.
 - Challenges
 - Uncertain motion of the UAVs & camera Pose information
 - Small (size) objects tracking
 - Related Approaches
 - Sensor-based: Satellite, laser, ultrasonic, etc.
 - Vision-based: Monocular vision, stereo vision and multi-view system.

Introduction

- Vision Measurement Technology based on UAV Platform
 - Our system

1. Introduction

2. Proposed Algorithm

3. Experiment Results

- Calculation 3D Coordinate
 - The framework of our algorithm

- Calculation 3D Coordinate
 - A. Estimate Camera Pose with ORB-SLAM
 - Estimate the relative poses of camera

- Calculation 3D Coordinate
 - A. Estimate Camera Pose with ORB-SLAM
 - Monocular scale calculation based on calibration board

- Select 5 KeyFrames evenly $\{f_1, f_2, f_3, f_4, f_5\}$
- Calibration external parameters

 $\left\{P_1,P_2,P_3,P_4,P_5\right\}$

Calculate real poses

 $Pose_{truei} = P_i P^{-1}$

 Calculate scale compare the real and relative poses

- Calculation 3D Coordinate
 - **B.** Tracking the Target
 - We make the image coordinate calculation of the target as a tracking problem
 - We adopt one of the most successful tracking algorithm STC

- Calculation 3D Coordinate
 - **C.** Calculation and Optimization
 - We calculate the initial value X using double KeyFrame positioning method

- Calculation 3D Coordinate
 - **C.** Calculation and Optimization
 - We optimize the value of X using the method of multiple view projective
 - reconstruction
 - BA (Bundle Adjustment)

- Calculation 3D Coordinate
 - **C.** Calculation and Optimization
 - BA (Bundle Adjustment)

1. Introduction

2. Proposed Algorithm

3. Experiment Results

Experiment Results

Scale, Relative and Real Poses of Keyframes

Scene	Scale	Relative Poses				Real Poses			
	/m	kf1	kf2	kf3	kf4	kf1	kf2	kf3	kf4
1	3.75	-0.38107	-0.55692	-1.04067	-1.06467	-1.51670	-2.98702	-3.90339	-3.97602
		-0.06016	-0.11677	-0.237356	-0.28363	-0.22949	-0.40928	-0.89217	-1.10984
		0.087729	0.151738	0.551887	0.611086	0.267462	0.777607	1.996418	2.22229
2	3.95	-0.53457	-0.41344	0.23116	0.25755	-2.14142	-1.64356	0.91398	1.04209
		-0.03906	-0.01658	-0.00601	-0.00489	-0.14621	-0.12191	-0.04197	-0.03159
		0.25177	0.21582	0.10269	0.086608	0.99082	0.78864	0.35710	0.32269
3	8.90	0.04316	-0.16993	0.06805	0.07750	-1.81466	-3.50321	-1.31856	0.69146
		0.27279	0.014856	-0.29751	-0.21015	1.71391	-1.33897	-4.71583	0.95745
		-0.04291	-0.03585	-0.00054	-0.08687	-0.30023	0.00374	0.42791	-0.67724

Experiment Results

The 3D geodetic coordinate result in our experiments

Scene	Experiment result /m	Ground true /m
indoor tight height an	[0.2824, 0.3169, -0.018] [0.6299, 0.1539, -0.002] [0.6197, 0.3146, -0.007] [0.4661, 0.4746, -0.004] [1.7613, 2.3836, -0.001]	[0.3200, 0.3200, 0.0000] [0.6400, 0.1600, 0.0000] [0.6400, 0.3200, 0.0000] [0.4800, 0.4800, 0.0000] [1.8000, 2.4000, 0.0000]
flight height 3.5m	[0.1897, 0.1496, 0.0215] [0.6625, 0.1479, 0.0195] [0.3395, 0.3024, 0.0160] [0.6500, 0.6237, 0.0141]	[0.1600, 0.1600, 0.0000] [0.6400, 0.1600, 0.0000] [0.3200, 0.3200, 0.0000] [0.6400, 0.6400, 0.0000]
flight height 15m	[0.3168, 0.0962, 1.1042] [0.1794, 0.3485, 0.9823] [0.0582, 0.4781, 1.0234] [0.3055, 0.4622, 0.9827]	[0.6400, 0.1600, 0.0000] [0.1600, 0.3200, 0.0000] [0.1600, 0.4800, 0.0000] [0.3200, 0.4800, 0.0000]

Experiment Results

Accuracy evaluation

- Indoor
 - Total 10 sets of data, 5 scenes
 - <1cm level accuracy</p>
- outdoor
 - Total 8 sets of data, 3 scenes
 - <1m level accuracy in the range of 30m</p>

1. Introduction

2. Proposed Algorithm

3. Experiment Results

- Contribution:
 - Extend the monocular to multi-view camera system with ORB-SALM.
 - Proposed a multiple KeyFrames location method.
- Limitation:
 - Lower measurement accuracy in large scale scenes.
- Future work:
 - Solve the accuracy of target tracking in large scene.
 - Improve the accuracy of pose estimation.

Thank you!