Geodetic Coordinate Calculation Based on Monocular Vision on UAV Platform

Zhi Li＇${ }^{\mathbf{1}}$ ，Tao Yang $^{\mathbf{1}}$ ，Guangpo Li ${ }^{\mathbf{1}}$ ，Jing Li ${ }^{\mathbf{2}}$ ，Yanning Zhang ${ }^{\mathbf{1}}$

${ }^{1}$ School of Computer Science and Engineering，Northwestern Polytechnical University，Xi＇an，China
${ }^{\mathbf{2}}$ School of Telecommuincations Engineering，XiDian University，Xi＇an，China

Outline

1. Introduction
2. Proposed Algorithm
3. Experiment Results
4. Conclusion

Introduction

- Vision Measurement Technology based on UAV Platform
- Goal
- Precise location of ground targets based on Monocular Vision.
- Challenges
- Uncertain motion of the UAVs \& camera Pose information
- Small (size) objects tracking
- Related Approaches
- Sensor-based: Satellite, laser, ultrasonic, etc.
- Vision-based: Monocular vision, stereo vision and multi-view system.

Introduction

- Vision Measurement Technology based on UAV Platform
- Our system

Outline

1. Introduction

2. Proposed Algorithm

3. Experiment Results

4. Conclusion

Proposed Algorithm

- Calculation 3D Coordinate
- The framework of our algorithm

Proposed Algorithm

- Calculation 3D Coordinate

A. Estimate Camera Pose with ORB-SLAM

- Estimate the relative poses of camera

Proposed Algorithm

- Calculation 3D Coordinate

A. Estimate Camera Pose with ORB-SLAM

- Monocular scale calculation based on calibration board

- Select 5 KeyFrames evenly $\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}$
- Calibration external parameters

$$
\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}\right\}
$$

- Calculate real poses

$$
\text { Pose }_{\text {truei }}=P_{i} P^{-1}
$$

- Calculate scale compare the real and relative poses

Proposed Algorithm

- Calculation 3D Coordinate

B. Tracking the Target

- We make the image coordinate calculation of the target as a tracking problem
- We adopt one of the most successful tracking algorithm STC

	Tracking the A target

Proposed Algorithm

- Calculation 3D Coordinate

C. Calculation and Optimization

- We calculate the initial value X using double KeyFrame positioning method

Proposed Algorithm

- Calculation 3D Coordinate

C. Calculation and Optimization

- We optimize the value of X using the method of multiple view projective reconstruction
- BA (Bundle Adjustment)

Proposed Algorithm

- Calculation 3D Coordinate
C. Calculation and Optimization
- BA (Bundle Adjustment)

$$
\min \sum_{i=1}^{n}, 1 i d\left(Q\left(X, I_{i}\right), x_{i}\right) \longrightarrow
$$

The re-projection

Where I_{i} is the i KeyFrame

$$
\begin{cases}v_{i}=1, & x_{i} \in I_{i} \\ v_{i}=0, & x_{i} \notin I_{i}\end{cases}
$$

Outline

1. Introduction
2. Proposed Algorithm

3. Experiment Results

4. Conclusion

Experiment Results

- Scale, Relative and Real Poses of Keyframes

Scene	Scale /m	Relative Poses				Real Poses			
		kf1	kf2	kf3	kf4	kf1	kf2	kf3	kf4
1	3.75	-0.38107	-0.55692	-1.04067	-1.06467	-1.51670	-2.98702	-3.90339	-3.97602
		-0.06016	-0.11677	-0.237356	-0.28363	-0.22949	-0.40928	-0.89217	-1.10984
		0.087729	0.151738	0.551887	0.611086	0.267462	0.777607	1.996418	2.22229
2	3.95	-0.53457	-0.41344	0.23116	0.25755	-2.14142	-1.64356	0.91398	1.04209
		-0.03906	-0.01658	-0.00601	-0.00489	-0.14621	-0.12191	-0.04197	-0.03159
		0.25177	0.21582	0.10269	0.086608	0.99082	0.78864	0.35710	0.32269
3	8.90	0.04316	-0.16993	0.06805	0.07750	-1.81466	-3.50321	-1.31856	0.69146
		0.27279	0.014856	-0.29751	-0.21015	1.71391	-1.33897	-4.71583	0.95745
		-0.04291	-0.03585	-0.00054	-0.08687	-0.30023	0.00374	0.42791	-0.67724

Experiment Results

- The 3D geodetic coordinate result in our experiments

Experiment result /m
[0.2824, 0.3169, -0.018]
[0.6299, 0.1539, -0.002]
[0.6197, 0.3146, -0.007]
[0.4661, 0.4746, -0.004]
[1.7613, 2.3836, -0.001]
[0.1897, 0.1496, 0.0215]
[0.6625, 0.1479, 0.0195]
[0.3395, 0.3024, 0.0160]
[0.6500, 0.6237, 0.0141]
[0.3168, 0.0962, 1.1042]
[0.1794, 0.3485, 0.9823]
[0.0582, 0.4781, 1.0234]
[0.3055, 0.4622, 0.9827]

Ground true /m
[0.3200, 0.3200, 0.0000] [0.6400, 0.1600, 0.0000] [0.6400, 0.3200, 0.0000] [0.4800, 0.4800, 0.0000]
[1.8000, 2.4000, 0.0000]
[0.1600, 0.1600, 0.0000] [0.6400, 0.1600, 0.0000] [0.3200, 0.3200, 0.0000]
[0.6400, 0.6400, 0.0000]
[$0.6400,0.1600,0.0000]$
[0.1600, 0.3200, 0.0000]
[0.1600, 0.4800, 0.0000]
[0.3200, 0.4800, 0.0000]

Experiment Results

- Accuracy evaluation
- Indoor

- Total 10 sets of data, 5 scenes
- <1cm level accuracy
- outdoor
- Total 8 sets of data, 3 scenes
- <1m level accuracy in the range of 30 m

Outline

1. Introduction
2. Proposed Algorithm
3. Experiment Results

4. Conclusion

Conclusion

- Contribution:
- Extend the monocular to multi-view camera system with ORB-SALM.
- Proposed a multiple KeyFrames location method.
- Limitation:
- Lower measurement accuracy in large scale scenes.
- Future work:
- Solve the accuracy of target tracking in large scene.
- Improve the accuracy of pose estimation.

Thank you！

